A recent broad comparative study suggested that factors during egg formation – in particular ‘flight efficiency’, which explained only 4% of the interspecific variation – are the main forces of selection on the evolution of egg shape in birds. As an alternative, we tested whether selection during the incubation period might also influence egg shape in two taxa with a wide range of egg shapes, the alcids (Alcidae) and the penguins (Spheniscidae). To do this, we analysed data from 30 species of these two distantly related but ecologically similar bird families with egg shapes ranging from nearly spherical to the most pyriform eggs found in birds. The shape of pyriform eggs, in particular, has previously proven difficult to quantify. Using three egg‐shape indices – pointedness, polar‐asymmetry and elongation – that accurately describe the shapes of all birds’ eggs, we examined the effects of egg size, chick developmental mode, clutch size and incubation site on egg shape. Linear models that include only these factors explained 70–85% of the variation in these egg‐shape indices, with incubation site consistently explaining > 60% of the variation in shape. The five species of alcids and penguins that produce the most pyriform eggs all incubate in an upright posture on flat or sloping substrates, whereas species that incubate in a cup nest have more spherical eggs. We suggest that breeding sites and incubation posture influence the ability of parents to manipulate egg position, and thus selection acting during incubation may influence egg‐shape variation across birds as a whole.
Read full abstract