Without meaningful, intuitive sensory feedback, even the most advanced myoelectric devices require significant cognitive demand to control. The dermal sensory regenerative peripheral nerve interface (DS-RPNI) is a biological interface designed to establish high-fidelity sensory feedback from prosthetic limbs. DS-RPNIs were constructed in rats by securing fascicles of residual sensory peripheral nerves into autologous dermal grafts, with the objectives of confirming regeneration of sensory afferents within DS-RPNIs and establishing the reliability of afferent neural response generation with either mechanical or electrical stimulation. Two months after implantation, DS-RPNIs were healthy and displayed well-vascularized dermis with organized axonal collaterals throughout and no evidence of neuroma. Electrophysiologic signals were recorded proximal from DS-RPNI's sural nerve in response to both mechanical and electrical stimuli and compared with (1) full-thickness skin, (2) deepithelialized skin, and (3) transected sural nerves without DS-RPNI. Mechanical indentation of DS-RPNIs evoked compound sensory nerve action potentials (CSNAPs) that were like those evoked during indentation of full-thickness skin. CSNAP firing rates and waveform amplitudes increased in a graded fashion with increased mechanical indentation. Electrical stimuli delivered to DS-RPNIs reliably elicited CSNAPs at low current thresholds, and CSNAPs gradually increased in amplitude with increasing stimulation current. These findings suggest that afferent nerve fibers successfully reinnervate DS-RPNIs, and that graded stimuli applied to DS-RPNIs produce proximal sensory afferent responses similar to those evoked from normal skin. This confirmation of graded afferent signal transduction through DS-RPNI neural interfaces validate DS-RPNI's potential role of facilitating sensation in human-machine interfacing. The DS-RPNI is a novel biotic-abiotic neural interface that allows for transduction of sensory stimuli into neural signals. It is expected to advance the restoration of natural sensation and development of sensorimotor control in prosthetics.