BackgroundAlveolar echinococcosis (AE) is a lethal zoonosis caused by the fox tapeworm Echinococcus multilocularis. The disease is difficult to treat, and an effective therapeutic drug is urgently needed. Echinococcus multilocularis-associated angiogenesis is required by the parasite for growth and metastasis; however, whether antiangiogenic therapy is effective for treating AE is unclear.MethodsThe in vivo efficacy of sunitinib malate (SU11248) was evaluated in mice by secondary infection with E. multilocularis. Enzyme-linked immunosorbent assays (ELISAs) were used to evaluate treatment effects on serum IL-4 and vascular endothelial growth factor A (VEGFA) levels after SU11248 treatment. Gross morphological observations and immunohistochemical staining were used to evaluate the impact of SU11248 on angiogenesis and the expression of pro-angiogenic factors VEGFA and VEGF receptor 2 (VEGFR2) in the metacestode tissues. Furthermore, the anthelmintic effects of SU11248 were tested on E. multilocularis metacestodes in vitro. The effect of SU11248 on the expression of VEGFA, VEGFR2, and phosphorylated VEGFR2 (p-VEGFR2) in liver cells infected with protoscoleces in vitro was detected by western blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA). The influence of SU11248 on endothelial progenitor cell (EPC) proliferation and migration was determined using CCK8 and transwell assays.ResultsIn vivo, SU11248 treatment markedly reduced neovascular lesion formation and substantially inhibited E. multilocularis metacestode growth in mice. Further, it exhibited high anti-hydatid activity as efficiently as albendazole (ABZ), and the treatment resulted in reduced protoscolex development. In addition, VEGFA, VEGFR2, and p-VEGFR2 expression was significantly decreased in the metacestode tissues after SU11248 treatment. However, no effect of SU11248 on serum IL-4 levels was observed. In vitro, SU11248 exhibited some anthelmintic effects and damaged the cellular structure in the germinal layer of metacestodes at concentrations below those generally considered acceptable for treatment (0.12–0.5 μM). Western blotting, RT-qPCR, and ELISA showed that in co-cultured systems, only p-VEGFR2 levels tended to decrease with increasing SU11248 concentrations. Furthermore, SU11248 was less toxic to Reuber rat hepatoma (RH) cells and metacestodes than to EPCs, and 0.1 μM SU11248 completely inhibited EPC migration to the supernatants of liver cell and protoscolex co-cultures.ConclusionsSU11248 is a potential candidate drug for the treatment of AE, which predominantly inhibits parasite-induced angiogenesis. Host-targeted anti-angiogenesis treatment strategies constitute a new avenue for the treatment of AE.Graphical
Read full abstract