Abstract

BackgroundDiabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus (DM) and a significant cause of acquired blindness in the working-age population worldwide. Aging is considered as an important risk factor for DR development. Macrophages in aged mice bear typical M2 marker proteins but simultaneously express a pro-inflammatory factor profile. This may explain why the level of intraocular inflammation does not decrease during proliferative diabetic retinopathy (PDR) despite the occurrence of neovascularization and fibrosis (M2 activation). α-Klotho (KL) was originally discovered as a soluble anti-aging factor, which is mainly expressed in kidney tubular epithelium, choroid plexus in the brain and secreted in the blood. However, the role of KL in DR pathophysiology has not been previously reported.MethodsType 1 (streptozotocin [STZ]-induced) and type 2 (a high-fat diet along with a low dose of STZ) diabetic mouse models were established and injected with or without KL adenovirus via the tail vein for 12 weeks. Vldlr−/− mice were injected intravitreally with or without soluble KL protein from P8 to P15. The retinal structure and function were analyzed by electroretinogram and optical coherence tomography. The neovascular lesions were analyzed by retinal flat mount and RPE flat mount. The senescence markers, macrophage morphology, and KL expression levels were detected by immunofluorescence staining. A cell model was constructed using RAW264.7 cells stimulated by 4-hydroxynonenal (4HNE) and transfected with or without KL adenovirus. The senescence-associated secretory phenotypes were detected by qRT-PCR. Senescence was detected by SA-β-Gal staining. Serum, aqueous humor, and vitreous humor KL levels of proliferative diabetic retinopathy (PDR) patients were measured by enzyme‐linked immunosorbent assay. Quantitative proteomics and bioinformatics were applied to predict the change of proteins and biological function after overexpression of KL in macrophages. The effects of KL on the HECTD1 binding to IRS1 were analyzed by bioinformatics, molecular docking, and Western Blot.ResultsSerum, aqueous humor, and vitreous humor KL levels were lower in patients with PDR than in those with cataracts. KL relieved the retinal structure damage, improved retina function, and inhibited retinal senescence in diabetic mice. KL administration attenuated the neovascular lesions in VLDLR−/− mice by decreasing the secretion of VEGFA and FGF2 from macrophages. KL also protected RAW264.7 cells from 4HNE-induced senescence. Additionally, it inhibited E3 ubiquitin ligase HECTD1 expression in both diabetic mouse peripheral blood mononuclear cells and 4HNE-treated RAW264.7 cells. KL inhibited HECTD1 binding to IRS1 and reduced the ubiquitination of IRS1.ConclusionsMacrophage aging is involved in DM-induced retinopathy. KL alleviates DM-induced retinal macrophage senescence by downregulating HECTD1 and decreasing IRS1 ubiquitination and degradation. Meanwhile, KL administration attenuated the neovascular lesions by altering the activation state of macrophages and decreasing the expression of VEGFA and FGF2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.