Diffusion MRI (dMRI) is known to be sensitive to hypoxic-ischemic encephalopathy (HIE). However, existing dMRI studies used simple diffusion tensor metrics and focused only on a few selected cerebral regions, which cannot provide a comprehensive picture of microstructural injury. To systematically characterize the microstructural alterations in mild, moderate, and severe HIE neonates compared to healthy neonates with advanced dMRI using region of interest (ROI), tract, and fixel-based analyses. Prospective. A total of 42 neonates (24 males and 18 females). 3-T, diffusion-weighted echo-planar imaging. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), fiber density (FD), fiber cross-section (FC), and fiber density and cross-section (FDC) were calculated in 40 ROIs and 6 tracts. Fixel-based analysis was performed to assess group differences in individual fiber components within a voxel (fixel). One-way analysis of covariance (ANCOVA) to compare dMRI metrics among severe/moderate/mild HIE and control groups and general linear model for fixel-wise group differences (age, sex, and body weight as covariates). Adjusted P value < 0.05 was considered statistically significant. For severe HIE, ROI-based analysis revealed widespread regions, including the deep nuclei and white matter with reduced FA, while in moderate injury, only FC was decreased around the posterior watershed zones. Tract-based analysis demonstrated significantly reduced FA, FD, and FC in the right inferior fronto-occipital fasciculus (IFOF), right inferior longitudinal fasciculus (ILF), and splenium of corpus callosum (SCC) in moderate HIE, and in right IFOF and left anterior thalamic radiation (ATR) in mild HIE. Correspondingly, we found altered fixels in the right middle-posterior IFOF and ILF, and in the central-to-right part of SCC in moderate HIE. For severe HIE, extensive microstructural injury was identified. For moderate-mild HIE, association fiber injury in posterior watershed area with a rightward lateralization was found. 1 TECHNICAL EFFICACY: Stage 3.
Read full abstract