Bovine laminitis disorder results in animal welfare and economic concerns in dairy and beef farms worldwide. However, the affected metabolic pathways, pathophysiologic characteristics, and inflammatory mechanisms remain unclear, hampering the development of new diagnostics. Using cerumen (earwax) as a source of volatile metabolites (cerumenomic) that carry valuable biological information has interesting implications for veterinary medicine. Nonetheless, up to now, no applications of veterinary cerumenomic assays have been made to identify bovine laminitis. This work aims to develop a veterinary cerumenomic assay for bovine laminitis identification that is non-invasive, robust, accurate, and sensitive to detecting the metabolic disturbances in bovine volatile metabolome. Twenty earwax samples (10 from healthy/control calves and 10 from laminitis calves) were collected from Nellore cattle, followed by Headspace/Gas Chromatography-Mass Spectrometry (HS/GC-MS) analysis and biomarker selection in two multivariate approaches: semiquantitative (intensity data) and semiqualitative (binary data). Following the analysis, cerumen volatile metabolites were indicated as candidate biomarkers for identifying bovine laminitis by monitoring their intensity or occurrence. In the semiquantitative strategy, the p-cresol presented the highest diagnostic figures of merit (area under the curve: 0.845, sensitivity: 0.700, and specificity: 0.900). Regarding the binary approach, a panel combining eight variables/volatiles, with formamide being the most prominent one, showed an area under the curve, sensitivity, and specificity of 0.97, 0.81, and 0.90, respectively. In summary, this work describes the first veterinary cerumenomic assay for bovine laminitis that indicates new metabolites altered during the inflammatory condition, paving the way for developing laminitis early diagnosis by monitoring the cerumen metabolites.
Read full abstract