In the present paper, we consider the existence of ground state sign-changing solutions for the semilinear Dirichlet problem \t\t\t0.1{−△u+λu=f(x,u),x∈Ω;u=0,x∈∂Ω,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\left \\{ \\textstyle\\begin{array}{l@{\\quad}l} -\\triangle u+\\lambda u=f(x, u), & \\hbox{$x\\in\\Omega$;} \\\\ u=0, & \\hbox{$x\\in\\partial\\Omega$,} \\end{array}\\displaystyle \\right . $$\\end{document} where Omegasubsetmathbb{R}^{N} is a bounded domain with a smooth boundary ∂Ω, lambda>-lambda_{1} is a constant, lambda_{1} is the first eigenvalue of (-triangle, H_{0}^{1}(Omega)), and fin C(Omegatimesmathbb{R}, mathbb{R}). Under some standard growth assumptions on f and a weak version of Nehari type monotonicity condition that the function tmapsto f(x, t)/|t| is non-decreasing on (-infty, 0)cup(0, infty) for every xinOmega, we prove that (0.1) possesses one ground state sign-changing solution, which has precisely two nodal domains. Our results improve and generalize some existing ones.
Read full abstract