Dendrimer-containing multilayer thin films have successfully been prepared by a layer-by-layer deposition of carboxyl-terminated poly(amidoamine) dendrimer (PAMAM–COOH) and poly(methacrylic acid) (PMA) on a solid surface at pH 4.0, while the multilayer film did not form at pH 7.0. The PMA/PAMAM–COOH multilayer films prepared at pH 4.0 are decomposed at neutral pH due to electrostatic repulsion between negatively-charged carboxylate residues. The results suggest that the primary force for the successful deposition of PAMAM–COOH and PMA at pH 4.0 is hydrogen bonding between COOH residues on the surface of the dendrimer and PMA. The multilayer films are decomposed also at strongly acidic pH, suggesting an electrostatic force of attraction between the protonated tertiary amino groups in PAMAM–COOH and a small fraction of COO − residues in PMA contributes in part to the multilayer formation at pH 4.0. The PMA/PAMAM–COOH thin films can accommodate model dyes, Rose Bengal and 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonate, and the release can be controlled by changing pH.