As the second most populous country in the world, India’s needs related to electricity production are still growing; thus, the country is seeking renewable energy resources as an alternative to conventional resources. Currently, India’s use of renewable energies ranks as fifth worldwide, with approximately 13.22% of the total amount of energy used in the form of solar energy, which is very nominal. Therefore, in the present study, a large-scale 20 MW solar PV power plant was modelled to access the technological and economic performances using the System Advisor Model (SAM) for the selected locations: Vishakhapatnam (VSKP), Hyderabad (HYD), Madurai (MDU), Thiruvananthapuram (TVC), and Bangalore (SBC), where solar radiation is high for South Indian states. In order to carry this out, three solar tracking mechanisms, i.e., fixed tracking (FT), single-axis tracking (SAT), and double-axis tracking (DAT), are taken into consideration at the selected locations. The results from the assessment of the FT mechanism’s yearly energy production show that 31 GWh were produced at TVC and 33 GWh were produced at VSKP, HYD, MDU, and SBC in the first year of the project, with a capacity factor (CF) from 18.5% to 19.5%. Conversely, the SAT mechanism generated an annual amount of energy, ranging from 38 GWh to 42 GWh, with an increase in the CF ranging from 22% to 23%. Furthermore, the DAT mechanism’s annual energy generated 44 GWh to 46 GWh, with the CF ranging between 25% and 26.5%. However, the recorded levelized cost of energy (LCOE) ranges were between 3.25 ¢/kWh to 4.25 ¢/kWh at the selected locations for all three mechanisms. The sensitivity analysis results also suggest that the FT and SAT mechanisms are not economically feasible because of their negative net present values (NPV) in all five locations, whereas the DAT mechanism generated positive results for all of the locations after 20 years. Furthermore, according to the study, we concluded that HYD was identified as the most feasible location in the South Indian region for installing a large-scale solar PV power project.
Read full abstract