Trees’ growth and areal responses to changing climate are primarily expected within the edges of the species range. Here, we compared the responses of Siberian pine (Pinus sibirica Du Tour), a moisture-sensitive species, and drought-resistant larch (Larix sibirica Ledeb.) at the southern part of their ranges in the Siberian Mountains (the Tannu-Ola Ridge). We study the species’ growth and proportion in the forests from forest-steppe to treeline ecotone along the elevation gradient. These studies are based on radial growth index (GI) analysis and GI dependence on the climate variables. We used satellite time series to detect the land cover changes (areas of larch and Siberian pine, as well as shrubs and birch). We compared trees’ GI before and after warming “restart” in the late 1990s. Generally, GI dependence on the air temperature was negative at elevations below c. 1600 m a.s.l., whereas GI dependence on the moisture variables (precipitation, vapor pressure deficit, and soil moisture) was positive for both species. Above 1600 m, increasing air temperatures stimulated species growth, whereas the influence of moisture variables was negative (for larch) or neutral (for Siberian pine). After the warming restart, the GI of both conifers increased in moisture-sufficient high elevations and treeline ecotone, whereas within low elevations (<1300 m), the GI was stagnant or suppressed. Both species’, especially Siberian pine, negative growth dependence on air temperature and positive dependence on the moisture variables strongly increased since the warming restart. We found a risen growth dependence of both species on the soil-stored water during the previous year (September–October), which smoothed moisture stress at the beginning of the growing season. Yet both species’ growth also suffered as a result of early spring warms. We found that larch is migrating in both uphill and downhill directions, while Siberian pine is migrating uphill only. Forests loss occurred at low elevations (<1300 m), whereas forest and shrub gain occurred at high (>2000 m) ones. The upper boundary of the forests and shrubs is migrating uphill at rates of about 0.8 and 0.3 m/y, respectively. We observed a decrease in Siberian pine proportion in the forests, whereas areas of larch and birch strongly increased (by 150% and 100%, respectively), which indicates the retreat of Siberian pine from its southern habitat. We suggested afforestation of the areas of Siberian pine mortality by the drought-tolerant larch species.
Read full abstract