The effects of glyphosate-based herbicide Excel Mera 71 under field and laboratory conditions were investigated to evaluate the pathological symptoms through light and electron microscopic study in the gill, liver, and kidney of Heteropneustes fossilis (Bloch) for a period of 30 days. Histological alterations like hypertrophy and fusion in secondary lamellae, damage in chloride cells were more prominent in laboratory conditions under light microscopy. Topological changes such as complete loss of microridges, swelling, and irregular arrangement of microridges in the gills were prominent under scanning electron microscopic study under laboratory conditions. Transmission electron microscopy (TEM) study depicted vacuolation and degeneration in chloride cells, dilation in rough endoplasmic reticulum (RER), and mitochondria in gill epithelium. The liver showed enlarged and pyknotic hepatocytes, vacuolation, excess fat deposition, and necrosis under laboratory conditions, while enlarged acentric nuclei, increased sinusoidal space, and less vacuolation in cytoplasm were observed under field conditions. TEM displayed cytoplasmic vacuolation and a reduced number of endoplasmic reticulum and glycogen droplets in the laboratory, but this was less pronounced under field conditions. In the kidneys, loss of hematopoietic tissue, degenerative changes in glomeruli, proximal and distal convoluted tubule, and epithelial cell lining of the renal tubules were comparatively less prominent under field conditions. Under TEM, epithelial cell necrosis, endoplasmic reticulum fragmentation, and mitochondrial degeneration were more prominent under laboratory conditions. The present study evaluated the comparative toxicity under field and laboratory conditions under long-term exposure to glyphosate herbicide and identified pathological responses as indicators in monitoring the herbicidal contamination in aquatic ecosystems.
Read full abstract