Objective: To explore the effects of expanded frontal-parietal pedicled flap in reconstructing cervical scar contracture deformity in children after burns. Methods: A retrospective observational study was conducted. From January 2015 to December 2020, 18 male children with cervical scar contracture deformity after burns who met the inclusion criteria were admitted to Zhengzhou First People's Hospital, aged 4 to 12 years, including 10 cases with degree Ⅱ cervical scar contracture deformity and 8 cases with degree Ⅲ scar contracture deformity, and were all reconstructed with expanded frontal-parietal pedicled flap. The surgery was performed in 3 stages. In the first stage, a cylindrical skin and soft tissue expander (hereinafter referred to as expander) with rated capacity of 300 to 500 mL was placed in the frontal-parietal region. The expansion time was 4 to 6 months with the total normal saline injection volume being 2.1 to 3.0 times of the rated capacity of expander. In the second stage, expander removal, scar excision, contracture release, and flap transfer were performed, with the flap areas of 18 cm×9 cm to 23 cm×13 cm and the secondary wound areas of 16 cm×8 cm to 21 cm×11 cm after scar excision and contracture release. After 3 to 4 weeks, in the third stage, the flap pedicle was cut off and restored. The rated volume of placed expander, total normal saline injection volume, type of vascular pedicle of flap, survival of flap and reconstruction of scar after the second stage surgery were recorded. The neck range of motion and cervico-mental angle were measured before surgery and one-year after surgery. The appearance of neck, occurrence of common complications in the donor and recipient sites of children, and satisfaction of children's families for treatment effects were followed up. Data were statistically analyzed with paired sample t test. Results: All the patients successfully completed the three stages of operation. The rated volume of implanted expander was 300 mL in 6 children, 400 mL in 9 children, and 500 mL in 3 children, with the volume of normal saline injection being 630 to 1 500 mL. The type of vascular pedicle of flap was double pedicle in 13 cases and was single pedicle in 5 cases. All the flaps in 17 children survived well, and the secondary wounds after neck scar excision and contracture release were all reconstructed in one procedure. In one case, the distal blood supply of the single pedicled flap was poor after the second stage surgery, with necrosis of about 2.5 cm in length. The distal necrotic tissue was removed on 10 days after the operation, and the wound was completely closed after the flap was repositioned. In the follow-up of 6 months to 3 years post operation, the cervical scar contracture deformity in 18 children was corrected without recurrence. The flap was not bloated, the texture was soft, and the appearances of chin and neck were good. The range of motion of cervical pre-buckling, extension, left flexion, and right flexion, and cervico-mental angle in one year after operation were improved compared with those before operation (with t values of 43.10, 22.64, 27.96, 20.59, and 88.42, respectively, P<0.01). The incision in the frontal donor site was located in the hairline, the scar was slight and concealed. No complication such as cranial depression was observed in expander placement site, and the children's families were satisfied with the result of reconstruction. Conclusions: Application of expanded frontal-parietal pedicled flap in reconstructing the cervical scar contracture deformity in children after burns can obviously improve the appearance and function of neck, with unlikely recurrence of postoperative scar contractures, thus it is an ideal method of reconstruction.
Read full abstract