Continuous aerosol therapy is safe, superior, and the mainstay in the therapy of patients with severe asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), and coronavirus disease (COVID-19). However, continuous nebulization has been perceived as highly expensive and labor-intensive, which often requires specialized medical equipment. Moreover, it is difficult to maintain consistent aerosol output and particle size delivery over an extended period without operator intervention. This work proposes a simple and reliable continuous nebulization method using a conventional gas jet nebulizer and intravenous (IV) bottle/bag. The present work reports detailed experimental studies on a gas jet nebulizer with Particle image velocimetry (PIV), Particle/droplet Imaging Analysis (PDIA), and Mie scattering techniques to demonstrate the feasibility of the proposed technique. The preliminary investigation shows that the proposed method provides continuous liquid output delivery without external supervision. The liquid delivery rate and mass median diameter (MMD) of the nebulizer mainly depend on the gas flow rate and suction height. The MMD of the primary generated droplets is reported to vary between 100 and 230 μm for a ± 10 cm suction height and 500–1000 mlph nebulization gas flow rate. Most importantly, the nebulizer spray angle, stability, droplet size distribution, and the axial and radial velocities of the droplets are marginally affected by the suction height. Therefore, the proposed system is a versatile, safe, and cost-effective method of continuous nebulization therapy, especially in resource-poor countries or contagious disease outbreak situations.