We report here the low-frequency spectra, resulting from the intermolecular/interionic vibrational dynamics, of aqueous mixtures of an ionic liquid, 1-methyl-3-n-octylimidazolium tetrafluoroborate, with the H(2)O mole fractions of 0.2, 0.4, and 0.6 and the neat ionic liquid and H(2)O within the frequency range of 0.1-700 cm(-1) by means of femtosecond Raman-induced Kerr effect spectroscopy. Addition of H(2)O induces tiny effects on the line shape of the low-frequency Kerr spectrum of the ionic liquid: ca. a 2 cm(-1) red shift in the first moment of the low-frequency spectrum has been observed for a transition from the neat ionic liquid to the binary mixture containing 0.6 mol fraction of H(2)O. Surface tension and liquid density of the mixture also accompany minimal changes upon addition of H(2)O. These results suggest that H(2)O molecules localize at the interface between the ionic and nonpolar regions, and the interionic interaction in the ionic region is weakly perturbed by the existence of H(2)O. On the other hand, successive addition of H(2)O in the mixture slows down the picosecond overdamped relaxation process measured in the 3-300 ps range even though the shear viscosity of the mixture decreases substantially.
Read full abstract