Abstract To assess the spatial structures and temporal evolutions of distinct physical processes on the West Florida Shelf, patterns of ocean current variability are extracted from a joint HF radar and ADCP dataset acquired from August to September 2003 using Self-Organizing Map (SOM) analyses. Three separate ocean–atmosphere frequency bands are considered: semidiurnal, diurnal, and subtidal. The currents in the semidiurnal band are relatively homogeneous in space, barotropic, clockwise polarized, and have a neap-spring modulation consistent with semidiurnal tides. The currents in the diurnal band are less homogeneous, more baroclinic, and clockwise polarized, consistent with a combination of diurnal tides and near-inertial oscillations. The currents in the subtidal frequency band are stronger and with more complex patterns consistent with wind and buoyancy forcing. The SOM is shown to be a useful technique for extracting ocean current patterns with dynamically distinctive spatial and temporal structures sampled by HF radar and supporting in situ measurements.