We present λ13 cm polarization observations of the nearby spiral galaxy NGC 6946 with the Westerbork Synthesis Radio Telescope (WSRT) to examine the nearside halo magnetic fields. Despite λ13 cm exhibiting similar two-dimensional morphology as observed at longer (λ18–22 cm) or shorter (λ3 and λ6 cm) wavelengths, more complete frequency coverage will be required to explain the gap in polarization in the southwest quadrant of the galaxy. We fit models of the turbulent and coherent line-of-sight magnetic fields to the fractional degree of linearly polarized emission at λ3, λ6, λ13, λ18, and λ22 cm from observations taken with the WSRT, Karl G. Jansky Very Large Array, and Effelsberg telescopes. The results favor a multilayer turbulent magneto-ionized medium consistent with current observations of edge-on galaxies. We constrain the physical properties of the synchrotron-emitting thin and thick disks (scale heights of 300 pc and 1.4 kpc, respectively) along with the thermal thick disk and halo (scale heights of 1 and 5 kpc, respectively). Our preferred model indicates a clumpy and highly turbulent medium within 1 kpc of the midplane, and a diffuse extraplanar layer with a substantially lower degree of Faraday depolarization. In the halo, we estimate a regular magnetic field strength of 0.4–2.2 μG and that turbulence and a total magnetic field strength of ∼6 μG result in a Faraday dispersion of σ RM = 4–48 rad m−2. This work is an example of how the advanced capabilities of modern radio telescopes are opening a new frontier for the study of cosmic magnetism.