Abstract The one-dimensional HEC-RAS multi-purpose open channel flow modeling software was successfully used, with ArcMap and HEC-GeoRAS, to simulate flow over the Wappapello Dam limited-use Ogee spillway (Wappapello, Missouri). Initial computational hydraulic modeling results predicted a lake elevation of 132.9 m (405.0 ft) [NAVD 1988] would be required for the resulting floodwaters overtopping the spillway to reach the nearby Wappapello Lake Management Office. An intense rainfall event during 2011 led to the spillway being overtopped for the first time since 1945. Spillway performance during the 2011 event was analyzed afterwards. Results indicated that the spillway crest was not submerged by backwater. A technique was employed which successfully estimated the design energy head of 7.160 m (23.49 ft) for the spillway. Hydraulic modeling developed after the 2011 event incorporated this estimated design energy head, allowing the spillway discharge coefficient to vary with discharge in the course of an unsteady modeling run. Results indicated that, while the spillway did perform as designed, the performance is limited by the shallow approach depth.