Universal genetic codes are degenerated with 61 codons specifying 20 amino acids, thus creating synonymous codons for a single amino acid. Synonymous codons have been shown to affect protein properties in a given organism. To address this issue and explore how Escherichia coli selects its "codon-preferred" DNA template(s) for synthesis of proteins with required properties, we have designed synonymous codon libraries based on an antibody (scFv) sequence and carried out bacterial expression and screening for variants with altered properties. As a result, 342 codon variants have been identified, differing significantly in protein solubility and functionality while retaining the identical original amino acid sequence. The soluble expression level varied from completely insoluble aggregates to a soluble yield of ~2.5 mg/liter, whereas the antigen-binding activity changed from no binding at all to a binding affinity of > 10(-8) m. Not only does our work demonstrate the involvement of genetic codes in regulating protein synthesis and folding but it also provides a novel screening strategy for producing improved proteins without the need to substitute amino acids.
Read full abstract