We report the MMS observations of the intense spikes of field-aligned current (FAC) produced by magnetic reconnection at the plasma sheet (PS) field lines. The MMS was located tailward of a near-Earth X-line and the most intense spike of FAC with an electric current density of ∼70 nA/m2 was observed near the magnetic separatrix. The FAC structures located deeper in the PS were strongly filamented and consisted of several spikes with a thickness of ∼(1–2)ρe (ρe is the gyroradius of thermal electrons). We found that the FAC in these structures was carried by unmagnetized thermal and suprathermal electron populations (≥ 1 keV), which were ∼(20–80)% of the entire electron population. Strong nonideal electric fields up to ∼100 mV/m were detected in the FAC spike near the magnetic separatrix. The generation of these fields was mainly due to the anomalous resistivity, possibly caused by the electrostatic fluctuations. As a result, a significant energy dissipation of up to 1.3 nW/m3 occurred within the electron-scale FAC structure, which caused an increase in the electron temperature by a factor of two compared with that outside the FAC. Thus, MMS observations demonstrate that during the interval of the active X-line, the outer part of the PS consists of multiple electron-scale FAC layers/filaments in which a significant energy exchange between electrons and fields occurs. To investigate the stability of these filaments and estimate their lifetime, additional observations and theoretical studies are needed.
Read full abstract