Purpose: A challenging aspect of glioma surgery is to distinguish tumour tissue from surrounding eloquent structures and perform resection with accuracy. Various technologies have been used to address this issue including neuronavigator, intraoperative magnetic resonant imaging, intraoperative ultrasound, and fluorescence, each of which has certain drawbacks and limitations. In this study, authors demonstrate the technique of using stereotactically placed catheters as guidance during cerebral glioma resection and report the surgical outcomes.Materials and methods: This study included patients with intrinsic cerebral tumour adjacent to the eloquent structures. Catheter trajectories were planned using three-dimensional cerebral reconstruction on navigation software and catheters were stereotactically placed to mark the intended extent of resection. All craniotomies were performed in awake fashion under neurophysiologic mapping and continuous physical examination for safe maximal resection. Clinical outcome and intended versus actual extent of resection were analysed.Results: Between January 2015 and December 2016, 15 consecutive patients (8 males and 7 females) with intrinsic cerebral tumour underwent craniotomy with this technique. Median age was 43 years. Seven patients (46.7%) had worsening neurological status within 24 h postoperatively. Of these 7 patients, 6 patients (85.7%) regained preoperative neurological status by 6 months. The intended extent of resections were total, subtotal and partial in 3 (20%), 9 (60%), and 3 (20%) patients, respectively. The actual extent of resections were total, subtotal and partial in 3 (20%), 8(53.3%), and 4 (26.7%) patients, respectively. There were no catheter related complications. There was no 30-day postoperative mortality.Conclusions: Catheter guided resection along with awake surgery and neurophysiologic monitoring is a valid technique for infiltrative tumour, especially for ones locating near eloquent structures where the margin of error is low. This is a simple and economical technique which requires only standard equipment widely available to neurosurgical operating theatres.