The aim of this study was to determine the effect of enzymatic hydrolysis using different proteases (Alcalase® and papain) and hydrolysis period on antioxidative activities and amino acid profiles of hydrolysed chia peptides. The experiment has been carried out using a completely randomized block design. The protein from defatted chia flour (DCF) was first isolated using different extraction pH (pH 10; 11; 12) and precipitation pH (pH 3.5, 4.0 and 4.5) to determine the highest protein isolated (CI) yield. The chia isolate (CI) extracted using the combination treatment (pH 12, 3.5) demonstrated the highest protein content of 17.22% and was selected to further hydrolysed using Alcalase® and papain enzyme at different hydrolysis time. The degree of hydrolysis (DH), protein solubility and peptide content of the chia protein hydrolysates (CH) were observed. Alcalase®-CH and Papain-CH demonstrated the highest DH at 60 mins of hydrolysis with the value of 47.09% and 44.29%, respectively. The protein solubility and peptide content were directly proportional to the DH. The Alcalase®-CH hydrolysed at 60 mins exhibited the highest antioxidant activities as measured by DPPH, ABTS and FRAP assays with values of 35.46µM AAE, 34.45µM TE and 23.11 µM FeSO4.7H2O E, respectively. The Alcalase®- CH demonstrated higher (p<0.05) hydrophobic amino acid (42.51%) compared to and Papain-CH (37.25%,). The highest aromatic amino acid content also recorded by Alcalase®-CH (20.10%), whereas Papain-CH with the value of 15.54%. However, both CH exhibited higher hydrophilic and aromatic amino acid compared to DCF and CI. This result has proved that the enzymatic hydrolysis of CH using Alcalase® and papain improved the nutritional and antioxidant capabilities, thus potentially represent a naturally occurring antioxidant ingredient in the production of functional food and nutraceutical appliance with significant health benefits.