Abstract

BackgroundMany diseases are associated with oxidative stress caused by free radicals. Current research is directed towards finding naturally-occurring antioxidants of plant origin. The aim of the present study was to evaluate the in vitro antioxidant activities of Spondias pinnata stem bark extract.MethodsA 70% methanol extract of Spondias pinnata stem bark was studied in vitro for total antioxidant activity, for scavenging of hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, singlet oxygen and hypochlorous acid, and for iron chelating capacity, reducing power, and phenolic and flavonoid contents.ResultsThe extract showed total antioxidant activity with a trolox equivalent antioxidant concentration (TEAC) value of 0.78 ± 0.02. The IC50 values for scavenging of free radicals were 112.18 ± 3.27 μg/ml, 13.46 ± 0.66 μg/ml and 24.48 ± 2.31 μg/ml for hydroxyl, superoxide and nitric oxide, respectively. The IC50 for hydrogen peroxide scavenging was 44.74 ± 25.61 mg/ml. For the peroxynitrite, singlet oxygen and hypochlorous acid scavenging activities the IC50 values were 716.32 ± 32.25 μg/ml, 58.07 ± 5.36 μg/ml and 127.99 ± 6.26 μg/ml, respectively. The extract was found to be a potent iron chelator with IC50 = 66.54 ± 0.84 μg/ml. The reducing power was increased with increasing amounts of extract. The plant extract (100 mg) yielded 91.47 ± 0.004 mg/ml gallic acid-equivalent phenolic content and 350.5 ± 0.004 mg/ml quercetin-equivalent flavonoid content.ConclusionThe present study provides evidence that a 70% methanol extract of Spondias pinnata stem bark is a potential source of natural antioxidants.

Highlights

  • Many diseases are associated with oxidative stress caused by free radicals

  • The present study provides evidence that a 70% methanol extract of Spondias pinnata stem bark is a potential source of natural antioxidants

  • Potassium persulfate (K2S2O8), ethylenediamine tetraacetic acid (EDTA), ascorbic acid, 2deoxy-2-ribose, trichloroacetic acid (TCA), mannitol, nitro blue tetrazolium (NBT), reduced nicotinamide adenine dinucleotide (NADH), phenazine methosulfate (PMS), sodium nitroprusside (SNP), sulfanilamide, naphthylethylenediamine dihydrochloride (NED), L-histidine, lipoic acid, sodium pyruvate, quercetin and ferrozine were obtained from Sisco Research Laboratories Pvt

Read more

Summary

Introduction

Many diseases are associated with oxidative stress caused by free radicals. Current research is directed towards finding naturally-occurring antioxidants of plant origin. Oxidative stress is initiated by free radicals, which seek stability through electron pairing with biological macromolecules such as proteins, lipids and DNA in healthy human cells and cause protein and DNA damage along with lipid peroxidation. These changes contribute to cancer, atherosclerosis, cardiovascular diseases, ageing and inflammatory diseases [1,2]. All human cells protect themselves against free radical damage by enzymes such as superoxide dismutase (SOD) and catalase, or compounds such as ascorbic acid, tocopherol and glutathione [3] Sometimes these protective mechanisms are disrupted by various pathological processes, and antioxidant supplements are vital to combat oxidative damage. Much attention has been directed towards the development of ethnomedicines with strong antioxidant properties but low cytotoxicities

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.