Weakly cemented sandstone (WCS) is a unique rock type widely distributed on the surface. Environmental factors such as groundwater and stress variations easily influence its fatigue mechanical properties and fracture characteristics. To design and evaluate the long-term stability of surrounding rock support in tunnel excavation and underground resource mining projects, investigating the fatigue mechanical properties and acoustic emission (AE) response characteristics of saturated WCS under different loading rates is of great practical and theoretical significance. This study employed experimental techniques such as X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and natural water absorption tests to investigate the mineral composition, pore size, and connectivity characteristics of WCS. The multi-level cyclic loading-unloading tests (MCLU) combined with the AE system were conducted on dry and saturated WCS specimens at different loading rates. The results reveal that the deformation modulus of these specimens initially increases and then decreases under cyclic loading conditions. Water significantly influences the fatigue strength and deformation resistance of sandstone. As the loading rate increases, the range of RA values broadens, accompanied by a marked increase in the number of AE signals with high RA values. Saturated sandstone specimens are more prone to developing macroscopic shear fracture surfaces. Water has a more substantial effect on the stress distribution ranges corresponding to the response of the Kaiser effect in WCS than loading rates. The capacity of the Kaiser effect to indicate the extent of rock damage is intricately linked to the progression of internal micro-cracks. When internal damage surpasses the critical value of the Kaiser effect memory damage, the accelerated propagation of shear cracks becomes pivotal in the internal damage of the sandstone. It seems that the presence of water within the interior of the rock may facilitate the dissolution of K-feldspar in WCS, which could result in the formation of kaolinite, which will be further transformed into illite. The hydration expansion of illite may further exacerbate the deterioration effect of the mechanical properties of WCS.
Read full abstract