Large numbers of studies have reported on the responses of plants that are exposed to a specific dose of ultraviolet-B (UV-B) radiation. However, in the natural environment UV-B is a highly dynamic variable with UV-B intensities depending on, amongst others, geographic, temporal, weather and climatic factors. Furthermore, UV-B effects on plants can potentially be modulated by other environmental variables, and vice versa. This study aimed to characterize UV-B effects on plant morphology and accumulation of UV-screening pigments within the context of an oceanic climate and to assess the potential seasonality of plant UV-B responses. Arabidopsis thaliana was grown outdoors under UV-blocking or transmitting filters. Genotypic differences in the adaptive response to UV-B were assessed at seven time-points over a 12 month period and involved the Arabidopsis accessions Ler, Col-0, and Bur-0. Strong seasonal effects were found on rosette morphology and total UV-screening pigment concentrations across the three accessions. Low temperatures were the main determinant of accumulation of UV-absorbing pigments, with no clear UV-B effect observed at any time throughout the year. There was a significant UV effect on morphology during the summer months, and this was most likely associated with stress. This study shows that UV-effects need to be analysed in the context of weather, and other co-occurring natural factors, and emphasizes the importance of a holistic, multifactorial approach for the investigation of environmentally relevant UV-effects.
Read full abstract