Abstract Patterns of plant biomass partitioning are fundamental to estimates of primary productivity and ecosystem process rates. Allometric relationships between above‐ground plant biomass and non‐destructive measures of plant size, such as cover, volume or stem density are widely used in plant ecology. Such size‐biomass allometry is often assumed to be invariant for a given plant species, plant functional group or ecosystem type. Allometric adjustment may be an important component of the short‐ or long‐term response of plants to abiotic conditions. We used 18 years of size‐biomass data describing of 85 plant species to investigate the sensitivity of allometry to precipitation, temperature or drought across two seasons and four ecosystems in central New Mexico, USA. Size‐biomass allometry varied with climate in 65%–70% of plant species. Closely related plant species had similar sensitivities of allometry to natural spatiotemporal variation in precipitation, temperature or drought. Annuals were less sensitive than perennials, and forbs were less sensitive than grasses or shrubs. However, the differences associated with plant life history or functional group were not independent of plant evolutionary history, as supported by the application of phylogenetically independent contrasts. Our results demonstrate that many plant species adjust patterns in the partitioning of above‐ground biomass under different climates and highlight the importance of long‐term data for understanding functional differences among plant species. A free Plain Language Summary can be found within the Supporting Information of this article.