In confined and intricate aquatic environments, fish frequently encounter the need to propel themselves under oblique flow conditions. This study employs a self-developed ghost-cell immersed boundary method coupled with GPU acceleration technology to numerically simulate the propulsion dynamics of flexible biomimetic fish swimming in oblique flow environments. This research scrutinizes diverse biomimetic fish fin morphologies, with particular emphasis on variations in the Strouhal number and angle of attack, to elucidate hydrodynamic performance and wake evolution. The results demonstrate that as the fin thickness increases, the propulsion efficiency decreases within the Strouhal number range of St = 0.2, 0.4. Conversely, within the range of St = 0.6 to 1.0, the efficiency variations stabilize. For all three fin morphologies, an increase in the Strouhal number significantly augmented both the lift-to-drag ratio and thrust, concomitant with a transition in the wake structure from smaller vortices to a larger alternating vortex shedding pattern. Furthermore, within the Strouhal number range of St = 0.2 to 0.4, the propulsion efficiency exhibits an increase, whereas in the range of St = 0.6 to 1.0, the propulsion efficiency stabilizes. As the angle of attack increases, the drag coefficient increases significantly, while the lift coefficient exhibits a diminishing rate of increase. An increased fin thickness adversely affects the hydrodynamic performance. However, this effect attenuates at higher Strouhal numbers. Conversely, variations in the angle of attack manifest a more pronounced effect on hydrodynamic performance. A thorough investigation and implementation of the hydrodynamic mechanisms demonstrated by swimming fish in complex flow environments enables the development of bio-inspired propulsion systems that not only accurately replicate natural swimming patterns, but also achieve superior locomotion performance and robust environmental adaptability.
Read full abstract