Purpose A new Chatbot system is implemented to provide both voice-based and textual-based communication to address student queries without any delay. Initially, the input texts are gathered from the chat and then the gathered text is fed to pre-processing techniques like tokenization, stemming of words and removal of stop words. Then, the pre-processed data are given to the Natural Learning Process (NLP) for extracting the features, where the XLnet and Bidirectional Encoder Representations from Transformers (BERT) are utilized to extract the features. From these extracted features, the target-based fused feature pools are obtained. Then, the intent detection is carried out to extract the answers related to the user queries via Enhanced 1D-Convolutional Neural Networks with Long Short Term Memory (E1DCNN-LSTM) where the parameters are optimized using Position Averaging of Binary Emperor Penguin Optimizer with Colony Predation Algorithm (PA-BEPOCPA). Finally, the answers are extracted based on the intent of a particular student’s teaching materials like video, image or text. The implementation results are analyzed through different recently developed Chatbot detection models to validate the effectiveness of the newly developed model.Design/methodology/approach A smart model for the NLP is developed to help education-related institutions for an easy way of interaction between students and teachers with high prediction of accurate data for the given query. This research work aims to design a new educational Chatbot to assist the teaching-learning process with the NLP. The input data are gathered from the user through chats and given to the pre-processing stage, where tokenization, steaming of words and removal of stop words are used. The output data from the pre-processing stage is given to the feature extraction phase where XLnet and BERT are used. In this feature extraction, the optimal features are extracted using hybrid PA-BEPOCPA to maximize the correlation coefficient. The features from XLnet and features from BERT were given to target-based features fused pool to produce optimal features. Here, the best features are optimally selected using developed PA-BEPOCPA for maximizing the correlation among coefficients. The output of selected features is given to E1DCNN-LSTM for implementation of educational Chatbot with high accuracy and precision.Findings The investigation result shows that the implemented model achieves maximum accuracy of 57% more than Bidirectional long short-term memory (BiLSTM), 58% more than One Dimansional Convolutional Neural Network (1DCNN), 59% more than LSTM and 62% more than Ensemble for the given dataset.Originality/value The prediction accuracy was high in this proposed deep learning-based educational Chatbot system when compared with various baseline works.
Read full abstract