Abstract

A real-time motion training system for skydiving is proposed. Aerial maneuvers are performed by changing the body posture and thus deflecting the surrounding airflow. The natural learning process is extremely slow due to unfamiliar free-fall dynamics, stress induced blocking of kinesthetic feedback, and complexity of the required movements. The key idea is to augment the learner with an automatic control system that would be able to perform the trained activity if it had direct access to the learner’s body as an actuator. The aiding system will supply the following visual cues to the learner: 1. Feedback of the current body posture; 2. The body posture that would bring the body to perform the desired maneuver; 3. Prediction of the future inertial position and orientation if the body retained its present posture. This paper presents results of a Proof-of-Concept experiment, whereby humans controlled a virtual skydiver free-falling in a computer simulation, by the means of their bodies. This task was impossible without the aiding system, enabling all participants to complete the task at the first attempt. The design of stabilizing closed loop control of highly non-linear and unstable dynamics with a human in the loop proved to be feasible. The future goal is applying this novel concept to aid novices maintain stability in free-fall and perceive the unfamiliar environmental dynamics, thus accelerating the initial stages of skill acquisition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.