Direct numerical simulations were performed to investigate the behavior of laminar separation bubbles subject to vertical gusts in an airfoil flow. Oscillating boundary-layer flows containing gusts—including unsteady pressure gradients—were prescribed via boundary conditions as well as forcing terms on a domain located in the upper rear section of a natural laminar flow airfoil. For this hybrid approach, unsteady Reynolds-averaged Navier-Stokes (URANS) simulations of the entire flowfield were carried out in conjunction with the so-called disturbance velocity approach, providing transient boundary conditions for the direct numerical simulation. A steady-state reference case with a Reynolds number of is compared and validated with results from wind tunnel experiments. Results of simulations at four different gust frequencies at the same amplitude , each with and without additional disturbances to the boundary layer introducing oblique resonance, are presented and discussed in this paper. The time-dependent behavior of convective instability modes is evaluated by using the continuous wavelet transform and linear stability theory with an unsteady extension. Furthermore, the contribution of the absolute instability—which appears to be larger in the case of oscillating flow compared to the steady-state case—is discussed. Lock-in effects are identified at high gust frequencies.
Read full abstract