Extraction of natural frequencies of a gravity dam or an embankment dam plays an important role in the seismic design of the dam because the seismic response of a dam is dependent largely on the dynamic characteristics of the dam. Owing to the lack of exact solutions and the geometry of a dam, numerical methods such as finite element methods have been often used to extract the natural frequencies of the dam. Since the finite element method is an approximate one, the resulting finite element solution to the natural frequency of a dam cannot be safely used unless its accuracy is evaluated within the acceptable range for the seismic design of the dam. To solve this problem, some asymptotic formulae for correcting the finite element predicted natural frequencies of a gravity dam and an embankment dam have been developed in this paper. Since the present asymptotic formulae are derived from the fact that the finite element solution tends to the exact one if the finite element size used approaches zero, they provide a corrected solution of higher accuracy for the natural frequency of a dam so that the accuracy of a finite element solution can be evaluated against this corrected solution. After the correctness and usefulness of the present formulae are assessed, two practical examples have been given to show how the asymptotic formulae can be used to correct and evaluate the discretization error for the finite element predicted natural frequencies of gravity dams and embankment dams.