Natural fiber-reinforced polymer composites are gaining in popularity due to recyclability and availability. This research investigates how oil palm shell (OPS) filler materials impact the interlaminar shear and the dynamic properties of flax fiber-reinforced hybrid composites under cryogenic circumstances. Filler materials in two different proportions (0, 2, 4, and 6 wt.% OPS) and 40 wt.% flax fibers were used to make composites. The OPS filler-filled polymeric materials were invented through typical hand lay-up. The hybrid materials were imperiled to liquid nitrogen for varying amounts of time after production (15 and 30 min). According to the findings, OPS nanoparticles can be used as natural rather than artificial fillers. Furthermore, loading 4 wt.% OPS nanoparticles into organic fabric-strengthened epoxy polymeric materials during 15 min of cryogenic settings resulted in the best interlaminar shear and dynamic performances. The storage and loss modulus of the flax/epoxy composites were improved by adding a 4% OPS nanofiller. The improvement can be ascribed to the hardness and stiffness of the additional OPS nanofillers. The 4% nano-OPS/flax/epoxy hybrid nanocomposite’s damping factor was substantially reduced compared to the flax/epoxy composites. The OPS nanofiller limits the epoxy molecular chain’s free segmental mobility, resulting in a lower damping factor and enhancing the adherence among flax fibers and the epoxy resin. The shattered specimen of the hybrid materials was investigated using a scanning electron microscope.
Read full abstract