Genomes can be viewed as constantly updated memory systems where information propagated in cells is refined over time by natural selection. This process, commonly known as heredity and evolution, has been the sole domain of DNA since the origin of prokaryotes. Now, some 3.5 billion years later, the pendulum of discovery has swung in a new direction, with carefully trained practitioners enabling the replication and evolution of "xeno-nucleic acids" or "XNAs"-synthetic genetic polymers in which the natural sugar found in DNA and RNA has been replaced with a different type of sugar moiety. XNAs have attracted significant attention as new polymers for synthetic biology, biotechnology, and medicine because of their unique physicochemical properties that may include increased biological stability, enhanced chemical stability, altered helical geometry, or even elevated thermodynamics of Watson-Crick base pairing.This Account describes our contribution to the field of synthetic biology, where chemical synthesis and polymerase engineering have allowed my lab and others to extend the concepts of heredity and evolution to synthetic genetic polymers with backbone structures that are distinct from those found in nature. I will begin with a discussion of α-l-threofuranosyl nucleic acid (TNA), a specific type of XNA that was chosen as a model system to represent any XNA system. I will then proceed to discuss advances in organic chemistry that were made to enable the synthesis of gram quantities of TNA phosphoramidites and nucleoside triphosphates, the monomers used for solid-phase and polymerase-mediated TNA synthesis, respectively. Next, I will recount our development of droplet-based optical sorting (DrOPS), a single-cell microfluidic technique that was established to evolve XNA polymerases in the laboratory. This section will conclude with structural insights that have been gained by solving X-ray crystal structures of a laboratory-evolved TNA polymerase and a natural DNA polymerase that functions with general reverse transcriptase activity on XNA templates.The final passage of this Account will examine the role that XNAs have played in synthetic biology by highlighting examples in which engineered polymerases have enabled the evolution of biologically stable affinity reagents (aptamers) and catalysts (XNAzymes) as well as the storage and retrieval of binary information encoded in electronic word and picture file formats. Because these examples provide only a glimpse of what the future may have in store for XNA, I will conclude the Account with my thoughts on how synthetic genetic polymers could help drive new innovations in synthetic biology and molecular medicine.