Little is known about how hormones interact in the photoperiodic induction of seasonal responses in birds. In this study, two experiments determined if the treatment with melatonin altered inhibitory effects of prolactin on photoperiodic induction of seasonal responses in the Palearctic-Indian migratory male redheaded bunting Emberiza bruniceps. Each experiment employed three groups (N = 6–7 each) of photosensitive birds that were held under 8 hours light: 16 hours darkness (8L:16D) since early March. In the experiment 1, beginning in mid June 2001, birds were exposed to natural day lengths (NDL) at 27 degree North (day length = ca.13.8 h, sunrise to sunset) for 23 days. In the experiment 2, beginning in early April 2002, birds were exposed to 14L:10D for 22 days. Beginning on day 4 of NDL or day 1 of 14L:10D, they received 10 (experiment 1) or 13 (experiment 2) daily injections of both melatonin and prolactin (group 1) or prolactin alone (group 2) at a dose of 20 microgram per bird per day in 200 microliter of vehicle. Controls (group 3) received similar volume of vehicle. Thereafter, birds were left uninjected for the next 10 (experiment 1) or 9 days (experiment 2). All injections except those of melatonin were made at the zeitgeber time 10 (ZT 0 = time of sunrise, experiment 1; time of lights on, experiment 2); melatonin was injected at ZT 9.5 and thus 0.5 h before prolactin. Observations were recorded on changes in body mass, testicular growth and feather regeneration.Under NDL (experiment 1), testis growth in birds that received melatonin 0.5 h prior to prolactin (group 1) was significantly greater (P < 0.05, Student Newman-Keuls test) than in those birds that received prolactin alone (group 2) or vehicle (group 3). Although mean body mass of three groups were not significantly different at the end of the experiment, the regeneration of papillae was dramatically delayed in prolactin only treated group 2 birds. Similarly, under 14L:10D (experiment 2) testes of birds receiving melatonin plus prolactin (group 1) and vehicle (group 3) were significantly larger (P < 0.05, Student Newman-Keuls test) than those receiving prolactin alone (group 2). Also, birds of groups 1 and 3, but not of group 2, had significant (P < 0.05, 1-way repeated measures Analysis of Variance) gain in body mass. However, unlike in the experiment 1, the feather regeneration in birds of the three groups was not dramatically different; a relatively slower rate of papillae emergence was however noticed in group 2 birds. Considered together, these results show that a prior treatment with melatonin blocks prolactin-induced suppression of photoperiodic induction in the redheaded bunting, and suggest an indirect role of melatonin in the regulation of seasonal responses of birds.