The key to a sustainable future is the reduction in humankind’s impact on natural systems via the development of new technologies and the improvement in source apportionment. Although days, years and seasons are arbitrarily set, their mechanisms are based on natural cycles driven by Earth’s orbital periods. This is not the case for weeks, which are a pure anthropic category and are known from the literature to influence emission cycles and atmospheric chemistry. For the first time since it started data gathering operations, CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane) and eBC (equivalent black carbon) values detected by the Lamezia Terme WMO/GAW station in Calabria, Southern Italy, have been evaluated via a two-pronged approach accounting for weekly variations in absolute concentrations, as well as the number of hourly averages exceeding select thresholds. The analyses were performed on seven continuous years of measurements from 2016 to 2022. The results demonstrate that the analyzed GHGs (greenhouse gasses) and aerosols respond differently to weekly cycles throughout the seasons, and these findings provide completely new insights into source apportionment characterization. Moreover, the results have been combined into a new parameter: the hereby defined WDWO (Weighed Distribution of Weekly Outbreaks) normalizes weekly trends in CO, CO2, CH4 and eBC on an absolute scale, with the scope of providing regulators and researchers alike with a new tool meant to better evaluate anthropogenic pollution and mitigate its effects on the environment and human health.
Read full abstract