AbstractAs a key region supplementing China's limited croplands, Northwest China has undergone rapid cropland expansion over the past decades to satisfy rising food demand from population growth and socio‐economic development. Although cropland expansion may overconsume local water resources in general, in Northwest China, increased precipitation and enhanced glacier melt have increased the water available for croplands. Counterintuitively, the enhanced evapotranspiration (ET) resulting from this cropland expansion could benefit remote ecologically vulnerable natural vegetation through atmospheric moisture recycling. In this study, we used a moisture tracking model to quantify contributions of croplands and cropland expansion to local precipitation and the consequent precipitation supply to natural vegetation in Northwest China. We found that the croplands contributed 27.69 billion m3/year (2.13%) of regional total precipitation and supplied 17.30 billion m3/year (2.39%) of precipitation over natural vegetation, and the cropland expansion resulted in a net increase of 80.25 million m3/year (1.07% of the total increase) in regional precipitation and 36.23 million m3/year (4.56% of the total increase) in precipitation supply for natural vegetation. Among different types of natural vegetation, grasslands received the most precipitation supply due to its vast area, followed by forests and shrublands. The more arid regions experienced not only faster rates of cropland expansion but also obtained a greater increase in regional precipitation and precipitation supply to natural vegetation. Our study quantifies the ecological impacts of cropland expansion through moisture recycling in Northwest China. This shows the complexities of water competition between agricultural development and ecological conservation in drylands and elsewhere.
Read full abstract