Abstract

Accurate and comparable annual mapping is critical to understanding changing vegetation distribution and informing land use planning and management. A U-Net convolutional neural network (CNN) model was used to map natural vegetation and forest types based on annual Landsat geomedian reflectance composite images for a 500 km × 500 km study area in southeastern Australia. The CNN was developed using 2018 imagery. Label data were a ten-class natural vegetation and forest classification (i.e., Acacia, Callitris, Casuarina, Eucalyptus, Grassland, Mangrove, Melaleuca, Plantation, Rainforest and Non-Forest) derived by combining current best-available regional-scale maps of Australian forest types, natural vegetation and land use. The best CNN generated using six Landsat geomedian bands as input produced better results than a pixel-based random forest algorithm, with higher overall accuracy (OA) and weighted mean F1 score for all vegetation classes (93 vs. 87% in both cases) and a higher Kappa score (86 vs. 74%). The trained CNN was used to generate annual vegetation maps for 2000-2019 and evaluated for an independent test area of 100 km × 100 km using statistics describing accuracy regarding the label data and temporal stability. Seventy-six percent of pixels did not change over the 20 years (2000-2019), and year-on-year results were highly correlated (94-97% OA). The accuracy of the CNN model was further verified for the study area using 3456 independent vegetation survey plots where the species of interest had ≥ 50% crown cover. The CNN showed an 81% OA compared with the plot data. The model accuracy was also higher than the label data (76%), which suggests that imperfect training data may not be a major obstacle to CNN-based mapping. Applying the CNN to other regions would help to test the spatial transferability of these techniques and whether they can support the automated production of accurate and comparable annual maps of natural vegetation and forest types required for national reporting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.