For a guided bone regeneration membrane, it is critical to possess osteogenic capability while inhibiting infection caused by bacteria. Inspired by the bilayer structure of the native periosteum, an electrospun Janus membrane with osteogenic and antibacterial dual-function is fabricated for guided bone regeneration. Hydrophilic moxifloxacin (MXF) and hydrophobic icariin (ICA) are loaded in the nanofibers made of a mixture of polycaprolactone and gelatin at the top and bottom layers, respectively, leading to the opposing hydrophilic/hydrophobic properties of the bilayer Janus membranes. The as-obtained Janus membrane exhibits excellent physical properties (tensile strength > 6.0MPa) and robust biocompatibility, indicating the immense potential as a suitable replacement for the native periosteum. The membrane has a superior surface morphology and outstanding degradation performance in vitro. Besides, the rapid release of MXF and the slow release of ICA can meet the different needs of drug release rates. Only ≈30% ICA is released from the as-obtained Janus membrane after 21 d while almost 80% MXF is released. Mimicking the bilayer structure of the native periosteum, the electrospun Janus membrane containing ICA and MXF exhibits excellent comprehensive properties, which provides a promising strategy for preparing multifunctional scaffolds for tissue engineering.