BackgroundResource competition is an important factor affecting the invasion success of alien plants, and environmental factors influence the competition outcomes between invasive and native plants. In this study, we explore the competitive pattern between invasive Chromolaena odorata and two native plant species under different phosphorus and irradiance levels.ResultsThe final biomass of each plant was regulated by both morphological and physiological traits. Invasive C. odorata did not always perform better than both native plants, and the competitive pattern between C. odorata and native plants was dependent on native competitor identity and environmental conditions. With competition, invasive C. odorata showed higher biomass (over 60%) than native Xanthium sibiricum under all treatments, but only showed higher biomass (about 20%) than native Eupatorium lindleyanum in normal irradiance treatments. The effect of phosphorus on competition depended on the irradiance level. Under normal irradiance, phosphorus addition increased (almost 10 times) the competitive index of invasive C. odorata; however, under shade irradiance, phosphorus addition decreased (40%) the competitive index of C. odorata.ConclusionThese results suggest that phosphorus, irradiance and native plant competitor together influence the relative performance of invasive C. odorata. In shade environment, selecting E. lindleyanum as competitor and increasing phosphorus level is an effective method for controlling the invasion of C. odorata.