ABSTRACTThis study presents a new 0.25° gridded 6-hourly global ocean surface wind vector dataset from 2000 to 2015 produced by blending satellite wind retrievals from five active scatterometers (QuikSCAT, ASCAT-A, ASCAT-B, OSCAT, and HY-2A), nine passive radiometers (four SSM/I sensors, two SSMIS sensors, TMI, AMSR-E, and AMSR2) and one polarimetric radiometer (WindSat) with reanalysis from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) employing an optimum interpolation method (OIM). The accuracy of this wind product is determined through various comparisons with buoy measurements, NCEP/NCAR reanalysis and the cross-calibrated multi-platform (CCMP) winds. The comparisons indicate that OIM winds agree well with buoys, showing a root-mean-squared difference of 1.32 m s−1 for wind speed and 24.73° for wind direction over 0–30 m s−1 wind speed range. And the quality of OIM winds is improved significantly relative to NCEP/NCAR reanalysis and can be comparable with CCMP winds. Furthermore, OIM winds can reveal abundant small-scale features that are not visible in reanalysis data. In addition, the wind speed and direction retrievals of most satellites are proved to play an important role in generating the high-quality product, but the procedure for including HY-2A winds and WindSat wind directions should be further explored.