Risk factors for birth defects are frequently investigated using data limited to liveborn infants. By conditioning on survival, results of such studies may be distorted by selection bias, also described as "livebirth bias." However, the implications of livebirth bias on risk estimation remain poorly understood. We sought to quantify livebirth bias and to investigate the conditions under which it arose. We used data on 3994 birth defects cases and 11829 controls enrolled in the National Birth Defects Prevention Study to compare odds ratio (OR) estimates of the relationship between three established risk factors (antiepileptic drug use, smoking, and multifetal pregnancy) and four birth defects (anencephaly, spina bifida, omphalocele, and cleft palate) when restricted to livebirths as compared to among livebirths, stillbirths, and elective terminations. Exposures and birth defects represented varying strengths of association with livebirth; all controls were liveborn. We performed a quantitative bias analysis to evaluate the sensitivity of our results to excluding terminated and stillborn controls. Cases ranged from 33% liveborn (anencephaly) to 99% (cleft palate). Smoking and multifetal pregnancy were associated with livebirth among anencephaly (crude OR [cOR] 0.61 and cOR 3.15, respectively) and omphalocele cases (cOR 2.22 and cOR 5.22, respectively). For analyses of the association between exposures and birth defects, restricting to livebirths produced negligible differences in estimates except for anencephaly and multifetal pregnancy, which was twofold higher among livebirths (adjusted OR [aOR] 4.93) as among all pregnancy outcomes (aOR 2.44). Within tested scenarios, bias analyses suggested that results were not sensitive to the restriction to liveborn controls. Selection bias was generally limited except for high mortality defects in the context of exposures strongly associated with livebirth. Findings indicate that substantial livebirth bias is unlikely to affect studies of risk factors for most birth defects.
Read full abstract