The use of immune checkpoint inhibitors (ICIs) in cancer treatment has shown promise but can also have unintended consequences, such as reactivating latent tuberculosis (TB). To develop treatments that address ICIs-related adverse events, it is essential to understand cellular heterogeneity across healthy and pathological tissues. We performed cross-tissue multiplexed staining analysis on samples from two patients with TB reactivation during pembrolizumab treatment for metastatic nasopharyngeal carcinoma. CD8+ T cells, rather than CD4+ T cells, accumulated preferentially in the tuberculoma and were associated with increased production of IFNγ and expression of CD137. Additionally, CD137 enrichment played a role in the spatial organization of the tuberculoma, with specific interaction limited to spatial proximal cells between IFNγ+ CD137+ CD8+ T cells and IL12+ CD137+ type-1 macrophages. This unique feature was not observed in non-tumoral or tumoral tissues. Our analysis of public transcriptomic datasets supported the notion that this cellular interaction was more prominent in patients with durable ICI responses compared to those with non-ICI-related TB. We suggest that shifts towards CD137-rich immune niches are correlated with both off-target immune-related adverse events and anti-tumor efficacy. Targeting the tumor microenvironment through conditional activation of anti-CD137 signaling in combination with ICIs can modulate the reactivity of T cells and macrophages for localized tumor killing without the potential off-target immune-related risks associated with ICIs alone.