We observed with the VLA, PdBI, and SMA the centimeter and millimeter continuum, N2H+(1-0), and CO(2-1) emission associated with a dusty cloud harboring a nascent cluster with intermediate-mass protostars. At centimeter wavelengths we found a strong source, tracing a UCHII region, at the eastern edge of the dusty cloud, with a shell-like structure, and with the near-infrared counterpart falling in the center of the shell. This is presumably the most massive source of the forming cluster. About 15'' to the west of the UCHII region and well embedded in the dusty cloud, we detected a strong millimeter source, MM1, associated with centimeter and near-infrared emission. MM1 seems to be driving a prominent high-velocity CO bipolar outflow, and is embedded in a ridge of dense gas traced by N2H+. We estimated that MM1 is an intermediate-mass source in the Class 0/I phase. About 15'' to the south of MM1, and still more deeply embedded in the dusty cloud, we detected a compact millimeter source, MM2, with neither centimeter nor near-infrared emission, but with water maser emission. MM2 is associated with a clump of N2H+, whose kinematics reveal a clear velocity gradient and additionally we found signposts of infall motions. MM2, being deeply embedded within the dusty cloud, with an associated water maser but no hints of CO outflow emission, is an intriguing object, presumably of intermediate mass. In conclusion, the UCHII region is found at the border of a dusty cloud which is currently undergoing active star formation. Two intermediate-mass protostars in the dusty cloud seem to have formed after the UCHII region and have different properties related to the outflow phenomenon.
Read full abstract