Introduction: Allergic rhinitis (AR) in children is a common chronic pathology with a strong impact on patient quality of life. The main physiopathology affects the nasal cavity as a multi-factorial disease involving nasal mucosa damage, nasal inflammation with high concentrations of histamine, pro-inflammatory cytokines such as histamine, TNF-α, IL-4, IL-5, IL-6, IL-10, IL-13, and IgE antibodies on the nasal mucosa. Systemic entry of these proteins through damaged nasal mucosa maintains continued inflammatory and allergen cascades. Therefore, an ideal treatment should be multitarget in order to stop allergen exposure, inflammation, and nasal mucosa barrier degradation, but such treatments are nearly impossible to conceive. We envisaged an osmotic and protective nasal barrier film, not only capable of protecting the nasal mucosa from allergen exposure but also of trapping and neutralizing selected cytokines and cleaning the nasal surface continuously without using any harmful substance for children. Materials and Methods: We associated highly osmotic glycerol solution with specific plant polymers to conceive an osmotic but stable film. As plant polymers (tannins) can bind with selective proteins, a range of glycerol binding non-cytotoxic polymers were screened using the sandwich ELISA method to select those having binding affinity for allergen induced nasal proinflammatory cytokines. After verifying cytotoxicity and irritant potential, a 15-day observational clinical study was performed with approval from the ethics committee on 30 children aged between 4-13, suffering from allergic rhinitis. The test product (TP) was supplied in 15-ml nasal sprays and applied 2-3 times per day for a period of 15 days. Saline solution served as control (CP). The scores of nasal and ocular symptoms, effect on quality of life, eosinophil count in nasal smears, and need for antihistamine treatment was evaluated at the start, at 30 minutes and on days 2, 3 and 15 of treatment. Results: A few specific polymers were able to bind with selected cytokines and histamine at adequate filmogen concentrations. The osmotic film was stable, non-irritant and was able to clean the nasal mucosa continuously for 4-6h after each application. Clinical observations of Total Nasal Symptom Score (TNSS) grouping the scores of nasal congestion, runny nose, sneezing, and itching, revealed a strong decrease right after the 1st treatment in both groups but the reduction was much stronger and faster with the TP. The mean TNSS score reduction was 44.74% in CP vs 83.53% in the TP group after 7 days of treatment (p<0.001). Total Ocular Symptom Score (TOSS) was decreased by 21.13% and 51.41% in CP v/s 35.12 and 99.59% in TP group on days 2 and 7, respectively. Nasal smear eosinophil count was equally strongly reduced in the TP v/s CP group. No treatment-related side effects were recorded in any of the groups. Conclusion: Protecting the nasal mucosa against allergens, neutralizing inflammatory cytokines, and keeping the nasal surface clean with an osmotic polymeric film, constitute a major breakthrough for the treatment of allergic rhinitis in children. This simple but scientific and logical approach should avoid exposing children to chemicals and to their long-term side effects.
Read full abstract