With the rapid development of industry and the acceleration of urbanization, oil pollution has caused serious damage to water, and its treatment has always been a research hotspot. Compared with traditional adsorption materials, aerogel has the advantages of light weight, large adsorption capacity and high selective adsorption, features that render it ideal as a high-performance sorbent for water treatment. The objective of this research was to develop novel hydrophobic polymer-reinforced silica aerogel microspheres (RSAMs) with water glass as the precursor, aminopropyltriethoxysilane as the modifier, and styrene as the crosslinker for oil removal from water. The effects of drying method and polymerization time on the structure and oil adsorption capacity were investigated. The drying method influenced the microstructure and pore structure in a noteworthy manner, and it also significantly depended on the polymerization time. More crosslinking time led to more volume shrinkage, thus resulting in a larger apparent density, lower pore volume, narrower pore size distribution and more compact network. Notably, the hydrophobicity increased with the increase in crosslinking time. After polymerization for 24 h, the RSAMs possessed the highest water contact angle of 126°. Owing to their excellent hydrophobicity, the RSAMs via supercritical CO2 drying exhibited significant oil and organic liquid adsorption capabilities ranging from 6.3 to 18.6 g/g, higher than their state-of-the-art counterparts. Moreover, their robust mechanical properties ensured excellent reusability and recyclability, allowing for multiple adsorption-desorption cycles without significant degradation in performance. The novel sorbent preparation method is facile and inspiring, and the resulting RSAMs are exceptional in capacity, efficiency, stability and regenerability.
Read full abstract