The effect of the narrow-band random excitation on the non-linear response of sandwich plates with an incompressible viscoelastic core is investigated. To model the core, both the transverse shear strains and rotations are assumed to be moderate and the displacement field in the thickness direction is assumed to be linear for the in-plane components and quadratic for the out-of-plane components. In connection to the moderate shear strains considered for the core, a non-linear single-integral viscoelastic model is also used for constitutive modeling of the core. The fifth-order perturbation method is used together with the Galerkin method to transform the nine partial differential equations to a single ordinary integro-differential equation. Converting the lower-order viscoelastic integral term to the differential form, the fifth-order method of multiple scale is applied together with the method of reconstitution to obtain the stochastic phase-amplitude equations. The Fokker–Planck–Kolmogorov equation corresponding to these equations is then solved by the finite difference method, to determine the probability density of the response. The variation of root mean square and marginal probability density of the response amplitude with excitation deterministic frequency and magnitudes are investigated and the bimodal distribution is recognized in narrow ranges of excitation frequency and magnitude.