Effect of plasticizer type on the kraft lignin–natural rubber composite microstructure and selected properties was determined. The composites were prepared with addition of a commonly used naphthenic oil plasticizer to study the decomposition product of polyurethane (glycerolysate) and its characteristics. Kraft lignin powder was incorporated into the natural rubber matrix in amounts of 10 and 40 parts per 100 parts of natural rubber (phr). The reference samples were prepared without any lignin present. The chemical interaction between the filler particles and natural rubber macromolecules was analyzed by Fourier transform infrared spectroscopy (FTIR) and the adhesion was characterized by scanning electron microscopy (SEM). The results of the adhesion measurements confirmed poor distribution of lignin particles into the natural rubber matrix with increasing filler content. Optimal lignin content in the composites was 10 phr in the case of both plasticizers. Moreover, the results of FTIR verified the formation of non-covalent bonds and the need for modification of the filler to enhance the reinforcing effect in the natural rubber matrix. Dynamic mechanical analysis (DMA) and mechanical measurements proved that the specimen containing 10 phr of lignin with the use of glycerolysate as plasticizer displayed the highest mechanical performance. It was demonstrated that glycerolysate and naphthenic oil as plasticizing agents showed similar effect on the thermal properties of the prepared composites. Also, the measured mechanical properties, such as tensile strength, hardness, resilience, and abrasiveness confirmed these findings.
Read full abstract