Seismic refraction surveys conducted in 1976 and 1979 over the broken ice surface of the Arctic Ocean, reveal distinctly different crustal structures for the Fram, Makarov and Canada basins. The Canada Basin, characterized by a 2–4 km thick sedimentary layer and a distinct oceanic layer 3B of 7.5 km/s velocity has the thickest crust and is undoubtedly the oldest of the three. The crust of the Makarov Basin has a thin sedimentary layer of less than 1 km and is about 9 km in total thickness. The Fram Basin has a similarly thin sedimentary layer but is 3–4 km thicker than the Makarov as it approaches the Lomonosov Ridge near the North Pole. The ridge itself is cored by material with a velocity of 6.6 km/s and may be a metagabbro similar to oceanic layer 3A. This ridge root material extends to a depth of about 27 km, where a change occurs to upper-mantle material with a velocity of 8.3 km/s. The core is overlain by up to 6 km of material with a velocity of about 4.7 km/s which could be oceanic layer 2A basalts or continental crystalline rocks with some sedimentary material. The Fram Basin probably began to open contemporaneously with the North Atlantic about 70 m.y. ago, by spreading along the Nansen-Gakkel Ridge. Although not yet dated, the Makarov Basin is probably no older than the initiation of the Fram Basin and may be much younger. The Alpha Ridge may once have been part of the Lomonosov Ridge, splitting off to form the Makarov Basin between 70 and 25 m.y. ago and possibly contributing to the Eurekan Orogeny of 25 m.y. ago, evident on Ellesmere Island. In contrast, the likely age of the Canada Basin lies in the 125–190 m.y. range and may have been formed by the counter-clockwise rotation of Alaska and the Northwind Ridge away from the Canadian Arctic Islands. The Lomonosov Ridge emerges from this scenario as a block resulting from a strike-slip shear zone on the European continental shelf, related to the opening of the Canada basin (180-120 my) and then becomes an entity broken from this shelf by the opening of the Eurasia Basin (70-0 m.y.).
Read full abstract