The presence of metronidazole (MNZ) and acetaminophen (ACE) in aquatic environments has raised growing concerns regarding their potential impact on human health. Incorporating various patterns into a photocatalytic material is considered a critical approach to achieving enhanced photocatalytic efficiency in the photocatalysis process. In this study, WO3 nanoparticles, which were immobilized onto ferromagnetic multi-walled carbon nanotubes that were functionalized using (3-glycidyloxypropyl)trimethoxysilane (FMMWCNTs@GLYMO@WO3), exhibited remarkable efficiency in removing MNZ and ACE (93% and 97%) in only 15 min. In addition, the new visible-light FMMWCNTs@GLYMO@WO3 nanoparticles as a magnetically separable photocatalyst were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), EDS-mapping, vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS), high-performance liquid chromatography (HPLC), and total organic carbon (TOC) due to detailed studies (morphological, structural, magnetic and optical properties) of the photocatalyst. In-depth spectroscopic and microscopic characterization of the newly developed ferromagnetic FMMWCNTs@GLYMO@WO₃ (III) photocatalyst revealed a spherical morphology, with nanoparticle diameters averaging between 23 and 39 nm. Compared to conventional multiwall carbon nanotube and WO₃ photocatalysts, FMMWCNTs@GLYMO@WO₃ (III) demonstrated superior photocatalytic activity. Remarkably, it exhibited excellent reusability, maintaining its efficiency over a minimum of five cycles in the degradation of metronidazole (MNZ) and acetaminophen (ACE).