A comparative performance analysis in terms of delay, power dissipation, power delay product (PDP), and crosstalk noise between SWCNT bundle interconnects with resistance estimated using conventionally (temperature independent model), and thermally aware model is investigated. The results are also compared with those of currently used copper interconnects at 22 nm technology node. It is observed that, with rise in temperature from 300 to 500 K, SWCNT bundles have a lower delay than that of copper interconnect at different lengths from 100 to $$1000\,\upmu \hbox {m}$$1000μm whereas reverse is true for power dissipation. The SPICE simulation results further reveal that for temperature variations ranging from 300 to 500 K, compared to conventional metal (copper) conductors, crosstalk noise voltage levels (positive peaks) in capacitively coupled SWCNT bundle, at the far end of victim line, are significantly low. Moreover, a relative average improvement in delay, power, and PDP using a thermally aware model in comparison with a temperature independent model is about 22.44, 7.59 and 31.96 %, respectively, with length variations from 100 to $$1000\,\upmu \hbox {m}$$1000μm, whereas for varied tube diameter is about 16.6, 5.6 and 19.72 %, respectively. The average relative improvement in the time duration reduction of victim output, for varied tube diameters, is about 21.7 % by using a thermally-aware model instead of a temperature-independent model of an SWCNT bundle resistance.
Read full abstract