An effective method for loading Pt nanoparticles on monodispersed hollow carbon nanospheres by one-step pyrolysis of polystyrene spheres (PS) adsorbed with platinum (IV) ions was developed. The polystyrene spheres were firstly enwrapped with a layer of sucrose and cetyltrimethyl ammonium bromide (CTAB) micelles. Adsorption of platinum (IV) ions onto the polystyrene spheres was carried out via electrostatic interaction between the negatively charged platinum salt and the positively charged amino group in the CTAB. Pyrolysis of the PS-Pt (IV) precursors at 600 °C under nitrogen atmosphere resulted in the simultaneous decomposition of the sucrose to carbon and the adsorbed platinum complex to metallic Pt. During this process the polystyrene spheres was removed and hollow sphere of PtC formed. Nanocomposites of hollow carbon nanospheres with different platinum loading were synthesized and their electrocatalytic activity was evaluated using methanol as a model molecule. Results showed that the as-prepared hollow carbon nanospheres supported platinum catalysts have high electrocatalytic activity and long-term stability towards the oxidation of methanol. The present method is promising for the fabrication of carbon supported platinum catalysts for the direct methanol fuel cell.
Read full abstract